Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Journal of clinical virology plus ; 2(4), 2022.
Article in English | EuropePMC | ID: covidwho-2259373

ABSTRACT

Highlights • Methods assessed for non-viral nucleic acid depletion from clinical samples.• SARS-CoV-2, human papillomavirus (HPV) and molluscum contagiosum virus (MCV) detection used as test of concept.• DNase I treatment followed by filtration dramatically improved virus detection efficiency.• Presenting a metagenomic workflow with Nanopore sequencing for prompt RNA and DNA virus detection.• The Delta variant of SARS-CoV-2, HPV-genotype and a co-infection of HPV and MCV-1 were correctly identified with this workflow. Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified;this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.

2.
Microbiol Spectr ; 11(1): e0417422, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2240744

ABSTRACT

The aim of this study was to provide information about immunity against COVID-19 along with risk factors and behavior among employees in day care facilities and preschools (DCS) in Denmark. In collaboration with the Danish Union of Pedagogues, during February and March 2021, 47,810 members were offered a point-of-care rapid SARS-CoV-2 antibody test (POCT) at work and were invited to fill in an electronic questionnaire covering COVID-19 exposure. Seroprevalence data from Danish blood donors (total Ig enzyme-linked immunosorbent assay [ELISA]) were used as a proxy for the Danish population. A total of 21,018 (45%) DCS employees completed the questionnaire and reported their POCT result {median age, 44.3 years (interquartile range [IQR], [32.7 to 53.6]); females, 84.1%}, of which 20,267 (96.4%) were unvaccinated and included in analysis. A total of 1,857 (9.2%) participants tested seropositive, significantly higher than a seroprevalence at 7.6% (risk ratio [RR], 1.2; 95% confidence interval [CI], 1.14 to 1.27) among 40,541 healthy blood donors (median age, 42 years [IQR, 28 to 53]; males, 51.3%). Exposure at work (RR, 2.9; 95% CI, 2.3 to 3.6) was less of a risk factor than exposure within the household (RR, 12.7; 95% CI, 10.2 to 15.8). Less than 25% of participants reported wearing face protection at work. Most of the participants expressed some degree of fear of contracting COVID-19 both at work and outside work. SARS-CoV-2 seroprevalence was slightly higher in DCS staff than in blood donors, but possible exposure at home was associated with a higher risk than at work. DCS staff expressed fear of contracting COVID-19, though there was limited use of face protection at work. IMPORTANCE Identifying at-risk groups and evaluating preventive interventions in at-risk groups is imperative for the ongoing pandemic as well as for the control of future epidemics. Although DCS staff have a much higher risk of being infected within their own household than at their workplace, most are fearful of being infected with COVID-19 or bringing COVID-19 to work. This represents an interesting dilemma and an important issue which should be addressed by public health authorities for risk communication and pandemic planning. This study design can be used in a strategy for ongoing surveillance of COVID-19 immunity or other infections in the population. The findings of this study can be used to assess the need for future preventive interventions in DCS, such as the use of personal protective equipment.


Subject(s)
Antibodies, Viral , COVID-19 , Child Day Care Centers , Faculty , Schools , Adult , Female , Humans , Male , COVID-19/epidemiology , Cross-Sectional Studies , Denmark/epidemiology , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies
3.
Lancet Infect Dis ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2230767

ABSTRACT

BACKGROUND: Estimates of immunity and severity for the SARS-CoV-2 omicron subvariant BA.5 are important to assess the public health impact associated with its rapid global spread despite vaccination. We estimated natural and vaccine immunity and severity of BA.5 relative to BA.2 in Denmark, a country with high mRNA-vaccination coverage and free-of-charge RT-PCR testing. METHODS: This nation-wide population-based study in Denmark included residents aged 18 years or older who had taken an RT-PCR test between 10 April and 30 June, 2022 (ie, the outcome period), and who the national COVID-19 surveillance system identified as having information since February 2020 on RT-PCR tests, whole-genome sequencing, vaccinations, and hospitalisation with a positive RT-PCR test and COVID-19 as the main diagnosis. First, we used a case-control design, in which cases were people infected with BA.5 or BA.2 during the outcome period and controls were people who tested negative for SARS-CoV-2 infection during the outcome period. We calculated the protection provided by a previous PCR-confirmed omicron infection against BA.5 and BA.2 infection and hospitalisation among triple-vaccinated individuals. Second, we compared vaccination status in people infected with BA.5 versus BA.2 and estimated relative vaccine protection against each subvariant. Third, we compared rates of hospitalisation for COVID-19 among people infected with BA.5 versus BA.2. We estimated effects using logistic regression with adjustment for sex, age, region, PCR-test date, comorbidity and, as appropriate, vaccination and previous infection status. FINDINGS: A total of 210 (2·4%) of 8678 of BA.5 cases, 192 (0·7%) of 29 292 of BA.2 cases, and 33 972 (19·0%) of 178 669 PCR-negative controls previously had an omicron infection, which was estimated in the adjusted analyses to offer 92·7% (95% CI 91·6-93·7) protection against BA.5 infection and 97·1% (96·6-97·5) protection against BA.2 infection. We found similarly high amounts of protection against hospitalisation owing to infection with BA.5 (96·4% [95% CI 74·2-99·5]) and BA.2 (91·2% [76·3-96·7]). Vaccine coverage (three mRNA doses vs none) was 9307 (94·2%) of 9878 among BA.5 cases and 30 581 (94·8%) of 32 272 among BA.2 cases, although in the adjusted analysis, there was a trend towards slightly higher vaccination coverage among BA.5 cases than BA.2 cases (OR 1·18 [95% CI 0·99-1·42]; p=0·064), possibly suggesting marginally poorer vaccine protection against BA.5. The rate of hospitalisation due to COVID-19 was higher among the BA.5 cases (210 [1·9%] of 11 314) than among the BA.2 cases (514 [1·4%] of 36 805), with an OR of 1·34 (95% CI 1·14-1·57) and an adjusted OR of 1·69 (95% CI 1·22-2·33), despite low and stable COVID-19 hospitalisation numbers during the study period. INTERPRETATION: The study provides evidence that a previous omicron infection in triple-vaccinated individuals provides high amounts of protection against BA.5 and BA.2 infections. However, protection estimates greater than 90% might be too high if individuals with a previous infection were more likely than those without one to come forward for a test for reasons other than suspicion of COVID-19. Our analysis also showed that vaccine protection against BA.5 infection was similar to, or slightly weaker than, protection against BA.2 infection. Finally, there was evidence that BA.5 infections were associated with an increased risk of hospitalisation compared with BA.2 infections. FUNDING: There was no funding source for this study.

4.
Microbiol Spectr ; 11(1): e0359122, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193575

ABSTRACT

Multiple mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) increase transmission, disease severity, and immune evasion and facilitate zoonotic or anthropozoonotic infections. Four such mutations, ΔH69/V70, L452R, E484K, and N501Y, occurred in the SARS-CoV-2 spike glycoprotein in combinations that allow the simultaneous detection of VOCs. Here, we present two flexible reverse transcription-quantitative PCR (RT-qPCR) platforms for small- and large-scale screening (also known as variant PCR) to detect these mutations and schemes for adapting the platforms to future mutations. The large-scale RT-qPCR platform was validated by pairwise matching of RT-qPCR results with whole-genome sequencing (WGS) consensus genomes, showing high specificity and sensitivity. Both platforms are valuable examples of complementing WGS to support the rapid detection of VOCs. Our mutational signature approach served as an important intervention measure for the Danish public health system to detect and delay the emergence of new VOCs. IMPORTANCE Denmark weathered the SARS-CoV-2 crisis with relatively low rates of infection and death. Intensive testing strategies with the aim of detecting SARS-CoV-2 in symptomatic and nonsymptomatic individuals were available by establishing a national test system called TestCenter Denmark. This testing regime included the detection of SARS-CoV-2 signature mutations, with referral to the national health system, thereby delaying outbreaks of variants of concern. Our study describes the design of the large-scale RT-qPCR platform established at TestCenter Denmark in conjunction with whole-genome sequencing to report mutations of concern to the national health system. Validation of the large-scale RT-qPCR platform using paired WGS consensus genomes showed high sensitivity and specificity. For smaller laboratories with limited infrastructure, we developed a flexible small-scale RT-qPCR platform to detect three signature mutations in a single run. The RT-qPCR platforms are important tools to support the control of the SARS-CoV-2 endemic in Denmark.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , COVID-19/diagnosis , Polymerase Chain Reaction , Mutation
5.
Open Forum Infect Dis ; 10(1): ofac679, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2190086

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with persistent symptoms ("long COVID"). We assessed the burden of long COVID among nonhospitalized adults with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection. Methods: In the fall of 2020, a cross-sectional survey was performed in the adult Danish general population. This included a self-administered point-of-care test for SARS-CoV-2 antibodies, the Short Form Health Survey (SF-12), and coronavirus disease 2019 (COVID-19)-associated symptom questions. Nonhospitalized respondents with a positive SARS-CoV-2 PCR test ≥12 weeks before the survey (cases) were matched (1:10) to seronegative controls on age, sex, and body mass index. Propensity score-weighted odds ratios (ORs) and ORs for risk factors were estimated for each health outcome. Results: In total, 742 cases and 7420 controls were included. The attributable risk of at least 1 long-COVID symptom was 25.0 per 100 cases (95% confidence interval [CI], 22.2-27.4). Compared to controls, cases reported worse general health (OR, 5.9 [95% CI, 5.0-7.0]) and had higher odds for a broad range of symptoms, particularly loss of taste (OR, 11.8 [95% CI, 9.5-14.6]) and smell (OR, 11.2 [95% CI, 9.1-13.9]). Physical and Mental Component Summary scores were also significantly reduced with differences of -2.5 (95% CI, -3.1 to -1.8) and -2.0 (95% CI, -2.7 to -1.2), respectively. Female sex and severity of initial infection were major risk factors for long COVID. Conclusions: Nonhospitalized SARS-CoV-2 PCR-positive individuals had significantly reduced physical and mental health, and 1 in 4 reported persistence of at least 1 long-COVID symptom.

6.
J Clin Virol Plus ; 2(4): 100120, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2121254

ABSTRACT

Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified; this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.

7.
The Lancet. Infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-2073143

ABSTRACT

Background Estimates of immunity and severity for the SARS-CoV-2 omicron subvariant BA.5 are important to assess the public health impact associated with its rapid global spread despite vaccination. We estimated natural and vaccine immunity and severity of BA.5 relative to BA.2 in Denmark, a country with high mRNA-vaccination coverage and free-of-charge RT-PCR testing. Methods This nation-wide population-based study in Denmark included residents aged 18 years or older who had taken an RT-PCR test between 10 April and 30 June, 2022 (ie, the outcome period), and who the national COVID-19 surveillance system identified as having information since February 2020 on RT-PCR tests, whole-genome sequencing, vaccinations, and hospitalisation with a positive RT-PCR test and COVID-19 as the main diagnosis. First, we used a case–control design, in which cases were people infected with BA.5 or BA.2 during the outcome period and controls were people who tested negative for SARS-CoV-2 infection during the outcome period. We calculated the protection provided by a previous PCR-confirmed omicron infection against BA.5 and BA.2 infection and hospitalisation among triple-vaccinated individuals. Second, we compared vaccination status in people infected with BA.5 versus BA.2 and estimated relative vaccine protection against each subvariant. Third, we compared rates of hospitalisation for COVID-19 among people infected with BA.5 versus BA.2. We estimated effects using logistic regression with adjustment for sex, age, region, PCR-test date, comorbidity and, as appropriate, vaccination and previous infection status. Findings A total of 210 (2·4%) of 8678 of BA.5 cases, 192 (0·7%) of 29 292 of BA.2 cases, and 33 972 (19·0%) of 178 669 PCR-negative controls previously had an omicron infection, which was estimated in the adjusted analyses to offer 92·7% (95% CI 91·6–93·7) protection against BA.5 infection and 97·1% (96·6–97·5) protection against BA.2 infection. We found similarly high amounts of protection against hospitalisation owing to infection with BA.5 (96·4% [95% CI 74·2–99·5]) and BA.2 (91·2% [76·3–96·7]). Vaccine coverage (three mRNA doses vs none) was 9307 (94·2%) of 9878 among BA.5 cases and 30 581 (94·8%) of 32 272 among BA.2 cases, although in the adjusted analysis, there was a trend towards slightly higher vaccination coverage among BA.5 cases than BA.2 cases (OR 1·18 [95% CI 0·99–1·42];p=0·064), possibly suggesting marginally poorer vaccine protection against BA.5. The rate of hospitalisation due to COVID-19 was higher among the BA.5 cases (210 [1·9%] of 11 314) than among the BA.2 cases (514 [1·4%] of 36 805), with an OR of 1·34 (95% CI 1·14–1·57) and an adjusted OR of 1·69 (95% CI 1·22–2·33), despite low and stable COVID-19 hospitalisation numbers during the study period. Interpretation The study provides evidence that a previous omicron infection in triple-vaccinated individuals provides high amounts of protection against BA.5 and BA.2 infections. However, protection estimates greater than 90% might be too high if individuals with a previous infection were more likely than those without one to come forward for a test for reasons other than suspicion of COVID-19. Our analysis also showed that vaccine protection against BA.5 infection was similar to, or slightly weaker than, protection against BA.2 infection. Finally, there was evidence that BA.5 infections were associated with an increased risk of hospitalisation compared with BA.2 infections. Funding There was no funding source for this study.

8.
PLoS One ; 17(10): e0274889, 2022.
Article in English | MEDLINE | ID: covidwho-2054348

ABSTRACT

Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/genetics , Genome, Viral/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Nat Commun ; 13(1): 5760, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050381

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) continues to evolve and new variants emerge. Using nationwide Danish data, we estimate the transmission dynamics of SARS-CoV-2 Omicron subvariants BA.1 and BA.2 within households. Among 22,678 primary cases, we identified 17,319 secondary infections among 50,588 household contacts during a 1-7 day follow-up. The secondary attack rate (SAR) was 29% and 39% in households infected with Omicron BA.1 and BA.2, respectively. BA.2 was associated with increased susceptibility of infection for unvaccinated household contacts (Odds Ratio (OR) 1.99; 95%-CI 1.72-2.31), fully vaccinated contacts (OR 2.26; 95%-CI 1.95-2.62) and booster-vaccinated contacts (OR 2.65; 95%-CI 2.29-3.08), compared to BA.1. We also found increased infectiousness from unvaccinated primary cases infected with BA.2 compared to BA.1 (OR 2.47; 95%-CI 2.15-2.84), but not for fully vaccinated (OR 0.66; 95%-CI 0.57-0.78) or booster-vaccinated primary cases (OR 0.69; 95%-CI 0.59-0.82). Omicron BA.2 is inherently more transmissible than BA.1. Its immune-evasive properties also reduce the protective effect of vaccination against infection, but do not increase infectiousness of breakthrough infections from vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Denmark/epidemiology , Family Characteristics , Humans , SARS-CoV-2/genetics
10.
Nat Commun ; 13(1): 5573, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042321

ABSTRACT

In late 2021, the Omicron SARS-CoV-2 variant overtook the previously dominant Delta variant, but the extent to which this transition was driven by immune evasion or a change in the inherent transmissibility is currently unclear. We estimate SARS-CoV-2 transmission within Danish households during December 2021. Among 26,675 households (8,568 with the Omicron VOC), we identified 14,140 secondary infections within a 1-7-day follow-up period. The secondary attack rate was 29% and 21% in households infected with Omicron and Delta, respectively. For Omicron, the odds of infection were 1.10 (95%-CI: 1.00-1.21) times higher for unvaccinated, 2.38 (95%-CI: 2.23-2.54) times higher for fully vaccinated and 3.20 (95%-CI: 2.67-3.83) times higher for booster-vaccinated contacts compared to Delta. We conclude that the transition from Delta to Omicron VOC was primarily driven by immune evasiveness and to a lesser extent an inherent increase in the basic transmissibility of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Family Characteristics , Humans
11.
PLoS One ; 17(7): e0272298, 2022.
Article in English | MEDLINE | ID: covidwho-1963049

ABSTRACT

Virus neutralization assays provide a means to quantitate functional antibody responses that block virus infection. These assays are instrumental in defining vaccine and therapeutic antibody potency, immune evasion by viral variants, and post-infection immunity. Here we describe the development, optimization and evaluation of a live virus microneutralization assay specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this assay, SARS-CoV-2 clinical isolates are pre-incubated with serial diluted antibody and added to Vero E6 cells. Replicating virus is quantitated by enzyme-linked immunosorbent assay (ELISA) targeting the SARS-CoV-2 nucleocapsid protein and the standardized 50% virus inhibition titer calculated. We evaluated critical test parameters that include virus titration, assay linearity, number of cells, viral dose, incubation period post-inoculation, and normalization methods. Virus titration at 96 hours was determined optimal to account for different growth kinetics of clinical isolates. Nucleocapsid protein levels directly correlated with virus inoculum, with the strongest correlation at 24 hours post-inoculation. Variance was minimized by infecting a cell monolayer, rather than a cell suspension. Neutralization titers modestly decreased with increasing numbers of Vero E6 cells and virus amount. Application of two different normalization models effectively reduced the intermediate precision coefficient of variance to <16.5%. The SARS-CoV-2 microneutralization assay described and evaluated here is based on the influenza virus microneutralization assay described by WHO, and are proposed as a standard assay for comparing neutralization investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests/methods , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
12.
Genome Med ; 14(1): 47, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1910346

ABSTRACT

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
13.
BMC Public Health ; 22(1): 1261, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1910302

ABSTRACT

BACKGROUND: People experiencing homelessness (PEH) and associated shelter workers may be at higher risk of infection with "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). The aim of this study was to determine the prevalence of SARS-CoV-2 among PEH and shelter workers in Denmark. DESIGN AND METHODS: In November 2020, we conducted a nationwide cross-sectional seroprevalence study among PEH and shelter workers at 21 recruitment sites in Denmark. The assessment included a point-of-care test for antibodies against SARS-CoV-2, followed by a questionnaire. The seroprevalence was compared to that of geographically matched blood donors considered as a proxy for the background population, tested using a total Ig ELISA assay. RESULTS: We included 827 participants in the study, of whom 819 provided their SARS-CoV-2 antibody results. Of those, 628 were PEH (median age 50.8 (IQR 40.9-59.1) years, 35.5% female) and 191 were shelter workers (median age 46.6 (IQR 36.1-55.0) years and 74.5% female). The overall seroprevalence was 6.7% and was similar among PEH and shelter workers (6.8% vs 6.3%, p = 0.87); and 12.2% among all participants who engaged in sex work. The overall participant seroprevalence was significantly higher than that of the background population (2.9%, p < 0.001). When combining all participants who reported sex work or were recruited at designated safe havens, we found a significantly increased risk of seropositivity compared to other participants (OR 2.23, 95%CI 1.06-4.43, p = 0.02). Seropositive and seronegative participants reported a similar presence of at least one SARS-CoV-2 associated symptom (49% and 54%, respectively). INTERPRETATIONS: The prevalence of SARS-CoV-2 antibodies was more than twice as high among PEH and associated shelter workers, compared to the background population. These results could be taken into consideration when deciding in which phase PEH are eligible for a vaccine, as part of the Danish national SARS-CoV-2 vaccination program rollout. FUNDING: TrygFonden and HelseFonden.


Subject(s)
COVID-19 , Ill-Housed Persons , Antibodies, Viral , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Denmark/epidemiology , Female , Health Personnel , Humans , Male , Middle Aged , Prevalence , SARS-CoV-2 , Seroepidemiologic Studies
14.
J Clin Virol ; 152: 105191, 2022 07.
Article in English | MEDLINE | ID: covidwho-1867336

ABSTRACT

OBJECTIVES: The aim of this study was to develop a RT-PCR assay for the specific detection of the SARS-CoV-2 Omicron Variant of Concern (VOC) as a rapid alternative to sequencing. METHODS: A RT-PCR was designed in silico and then validated using characterised clinical samples containing Omicron (both BA.1 and BA.2 lineages) and the Omicron synthetic RNA genome. As negative controls, SARS-CoV-2 positive clinical samples collected in May 2020, and synthetic RNA genomes of the isolate Wuhan Hu-1 and of the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Iota (B.1.526), Epsilon (B.1.429) and Delta (B.1.617.2) SARS-CoV-2 VOC were used. RESULTS: Experiments performed using as templates the synthetic RNA genomes demonstrate the high specificity of the PCR-method for the SARS-CoV-2 Omicron. Despite the synthetic RNAs were used at high copy numbers, specific signal was mainly detected with the Omicron synthetic genome. Only a non-specific late signal was detected using the Alpha variant genome, but these results were considered negligible as Alpha VOC has been replaced by the Delta and it is not circulating anymore in the world. Using our method, we confirmed the presence of Omicron on clinical samples containing this variant but not of other SARS-CoV-2 lineages. The method is highly sensitive and can detect up to 1 cp of the Omicron virus per µl. CONCLUSIONS: The method presented here, in combination with other methods in use for detection of SARS-CoV-2, can be used for an early identification of Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
16.
Euro Surveill ; 27(10)2022 03.
Article in English | MEDLINE | ID: covidwho-1742167

ABSTRACT

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/genetics
17.
BMC Infect Dis ; 22(1): 143, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1690954

ABSTRACT

BACKGROUND: COVID-19 is thought to be more prevalent among ethnic minorities and individuals with low socioeconomic status. We aimed to investigate the prevalence of SARS-CoV-2 antibodies during the COVID-19 pandemic among citizens 15 years or older in Denmark living in social housing (SH) areas. METHODS: We conducted a study between January 8th and January 31st, 2021 with recruitment in 13 selected SH areas. Participants were offered a point-of-care rapid SARS-CoV-2 IgM and IgG antibody test and a questionnaire concerning risk factors associated with COVID-19. As a proxy for the general Danish population we accessed data on seroprevalence from Danish blood donors (total Ig ELISA assay) in same time period. RESULTS: Of the 13,279 included participants, 2296 (17.3%) were seropositive (mean age 46.6 (SD 16.4) years, 54.2% female), which was 3 times higher than in the general Danish population (mean age 41.7 (SD 14.1) years, 48.5% female) in the same period (5.8%, risk ratios (RR) 2.96, 95% CI 2.78-3.16, p > 0.001). Seropositivity was higher among males (RR 1.1, 95% CI 1.05-1.22%, p = 0.001) and increased with age, with an OR seropositivity of 1.03 for each 10-year increase in age (95% CI 1.00-1.06, p = 0.031). Close contact with COVID-19-infected individuals was associated with a higher risk of infection, especially among household members (OR 5.0, 95% CI 4.1-6.2 p < 0,001). Living at least four people in a household significantly increased the OR of seropositivity (OR 1.3, 95% CI 1.0-1.6, p = 0.02) as did living in a multi-generational household (OR 1.3 per generation, 95% CI 1.1-1.6, p = 0.003). Only 1.6% of participants reported not following any of the national COVID-19 recommendations. CONCLUSIONS: Danish citizens living in SH areas of low socioeconomic status had a three times higher SARS-CoV-2 seroprevalence compared to the general Danish population. The seroprevalence was significantly higher in males and increased slightly with age. Living in multiple generations households or in households of more than four persons was a strong risk factor for being seropositive. Results of this study can be used for future consideration of the need for preventive measures in the populations living in SH areas.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Denmark/epidemiology , Female , Housing , Humans , Male , Middle Aged , Pandemics , Seroepidemiologic Studies
18.
NPJ Vaccines ; 6(1): 156, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1585846

ABSTRACT

New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.

19.
Microbiol Spectr ; 9(3): e0133021, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1583201

ABSTRACT

"Testing Denmark" is a national, large-scale, epidemiological surveillance study of SARS-CoV-2 in the Danish population. Between September and October 2020, approximately 1.3 million people (age >15 years) were randomly invited to fill in an electronic questionnaire covering COVID-19 exposures and symptoms. The prevalence of SARS-CoV-2 antibodies was determined by point-of care rapid test (POCT) distributed to participants' home addresses. In total, 318,552 participants (24.5% invitees) completed the study and 2,519 (0.79%) were seropositive. Of the participants with a prior positive PCR test (n = 1,828), 29.1% were seropositive in the POCT. Although seropositivity increased with age, participants 61 years and over reported fewer symptoms and were tested less frequently. Seropositivity was associated with physical contact with SARS-CoV-2 infected individuals (risk ratio [RR] 7.43, 95% CI: 6.57-8.41), particular in household members (RR 17.70, 95% CI: 15.60-20.10). A greater risk of seropositivity was seen in home care workers (RR 2.09, 95% CI: 1.58-2.78) compared to office workers. A high degree of adherence with national preventive recommendations was reported (e.g., >80% use of face masks), but no difference were found between seropositive and seronegative participants. The seroprevalence result was somewhat hampered by a lower-than-expected performance of the POCT. This is likely due to a low sensitivity of the POCT or problems reading the test results, and the main findings therefore relate to risk associations. More emphasis should be placed on age, occupation, and exposure in local communities. IMPORTANCE To date, including 318,522 participants, this is the largest population-based study with broad national participation where tests and questionnaires have been sent to participants' homes. We found that more emphasis from national and local authorities toward the risk of infection should be placed on age of tested individuals, type of occupation, as well as exposure in local communities and households. To meet the challenge that broad nationwide information can be difficult to gather. This study design sets the stage for a novel way of conducting studies. Additionally, this study design can be used as a supplementary model in future general test strategy for ongoing monitoring of COVID-19 immunity in the population, both from past infection and from vaccination against SARS-CoV-2, however, with attention to the complexity of performing and reading the POCT at home.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/immunology , Denmark , Female , Humans , Immunity , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Odds Ratio , Point-of-Care Testing , Population Surveillance , Prevalence , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Surveys and Questionnaires
20.
Euro Surveill ; 26(49)2021 12.
Article in English | MEDLINE | ID: covidwho-1566615

ABSTRACT

Several factors may account for the recent increased spread of the SARS-CoV-2 Delta sub-lineage AY.4.2 in the United Kingdom, Romania, Poland, and Denmark. We evaluated the sensitivity of AY.4.2 to neutralisation by sera from 30 Comirnaty (BNT162b2 mRNA) vaccine recipients in Denmark in November 2021. AY.4.2 neutralisation was comparable to other circulating Delta lineages or sub-lineages. Conversely, the less prevalent B.1.617.2 with E484K showed a significant more than 4-fold reduction in neutralisation that warrants surveillance of strains with the acquired E484K mutation.


Subject(s)
COVID-19 , Vaccines , BNT162 Vaccine , COVID-19 Vaccines , Denmark , Humans , Mutation , RNA, Messenger , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL